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Abstract

Finite Element Analysis is a numerical method for solving partial
differential equations across a variety of domain areas, most notably
solid mechanics and structural analysis. The method includes subdi-
viding the domain area into smaller elements, and calculating the field
values at these vertices, then interpolating these values to obtain the
field at all points within the space. The partial differential equations
characterizing electromagnetic wave propagation thus lend themselves
to an application of this method. In this project, we implemented a
finite element solver for electromagnetics and applied this problem to
computing the modal solutions for a different waveguides.

1 Introduction

In several problems involving electromagnetic wave propagation, exact ana-
lytical field solutions cannot be derived. In such cases, numerical methods
such as the finite element method and the finite difference method allow one
to segment the problem into smaller parts and to obtain a numerical solution
in each of these parts. Some numerical methods typically used in photonics
problems include the finite difference method and finite element analysis.

In the finite element approach (eg. [4], [3]), the domain is broken up in a
structured fashion into several smaller elements and the field in each element
is expressed in terms of a unique functional form of the field at a discrete
number of points over the domain. The equations for each element are then
assembled into a system of algebraic equations in terms of the unknowns. The
FEM approach confers several advantages, including its ability to handle
complex geometries and boundaries, accommodate for greater accuracy in
field approximations and offer the scope for local element refinement.

In this report, we have applied this method to calculating the modal
field solutions of a waveguide, considering different meshing and refractive
index cases. The report is organized as follows: Section 2 covers the theory
corresponding to the finite element formulation and the equations specific to
the electromagnetic wave propagation context, Section 3 outlines the code
for each segment, the mesh plots and the field solutions obtained for each
field. Section 4 outlines future directions that would be of interest.
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2 Theory

2.1 Finite Element Formulation

In the finite element scheme, the geometry of the waveguide must be bro-
ken up into several elements and the field in each element is expressed as a
function of the value at the nodes of the element. The Delaunay Triangu-
lation scheme is one such method of dividing a surface into triangles such
that the minimum angle of a triangle is maximized, reducing the ’skewness’
of the triangles. A unique Delaunay scheme necessarily exists for any set of
points. It also possesses the property that no other point will belong to the
circumcircle of any triangle.

The field at any point in an element can be represented in the form

Ni(x, y) =
ai + bix+ ciy

2A
(1)

φe(x, y) =
n∑

I=1

NI(x, y)φe
I (2)

where I runs over the nodes of the element and n=3 for a triangular mesh.
The NI(x, y) is termed the shape function. One choice of the shape function
is the Lagrange shape function.

The final finite element scheme results in a generalized eigenvalue prob-
lem of the form

[K]
−→
φ = λ[b]

−→
φ

This is of the form of a generalized eigenvalue problem. Here, [K] and [b] are
termed the stiffness and mass matrices respectively.

2



2.2 Electromagnetic Wave Propagation in Waveguides

Maxwell’s Equations can be decoupled into the vector wave equations:

∇2E + ω2εµE = −∇(lnε) · E

∇2H + ω2εµH = −∇(lnε)×∇×H

Under the weakly guiding approximation and for small index contrasts,
the scalar formulation can be applied, in which only the Transverse Electric
(TE) or the quasi-TE modes are analyzed.

∇2E = ω2εµE

∇2H = ω2εµH

The rigorous implementation of the electromagnetic formulation would re-
quire the storage of six field components (three each for the electric and
magnetic fields) which may not be very efficient. In certain cases, where the
index contrast is sufficiently low the weakly guiding approximation is appli-
cable [5]. In the modal solutions of waveguides, for TM modes, we solve for
Ez subject to the Dirichlet Boundary condition of E=0 at the boundary. For
TE modes, the field Hz is calculated with a Neumann Boundary condition
of ∂zHz = 0. The Dirichlet boundary condition is implemented by zeroing
out the rows of the stiffness and mass matrices ([K] and [b]) corresponding
to the nodes which lie on the boundary.

For the scalar formulation, a variational L is minimized over the entire
domain.

L =

∫∫
Ω

∇2E2
x − kon2E2

x + β2E2
x (3)

K =

∫∫
Ω

∇2N e
iN

e
j + β2N e

iN
e
j (4)

b =

∫∫ e

Ω

k2
on

2
oN

e
iN

e
j (5)
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3 Code Walkthrough

3.1 Meshing

import numpy as np
import matp lo t l i b . pyplot as p l t

a dim = 10 .0
b dim = 5.0

pt1 = np . array ( [ 0 . 0 , 0 . 0 ] )
pt2 = np . array ( [ a dim , 0 . 0 ] )
pt3 = np . array ( [ a dim , b dim ] )
pt4 = np . array ( [ 0 . 0 , b dim ] )

po in t s = [ ]
d = 30

for i 1 in range (0 , d−1):
for i 2 in range (0 , (d−i 1 )+1):

for i 3 in range (0 , (d−( i 1+i 2 )+1)) :
for i 4 in range (0 , (d−( i 1+i 2+i 3 )+1)) :

x = ( pt1∗ i 1 + pt2∗ i 2 + pt3∗ i 3 + pt4∗ i 4 )/d
po in t s . append ( tuple ( x ) )

po in t s=np . array ( l i s t ( set ( po in t s ) ) )

from s c ipy . s p a t i a l import Delaunay
t r i = Delaunay ( po in t s )

N = len ( po in t s )
M = len ( t r i . s i m p l i c e s )
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(a) Rect. Metal Waveguide (b) Rectangular Waveguide

(c) Circular Metal Waveguide (d) Optical Metal Waveguide

Figure 1: Meshing Results
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3.2 Generation of Mass & Stiffness Matrices

n = 1 .5
beta = 2
Area = np . z e r o s (M)
K det = np . z e r o s ( (M, 3 , 3 ) )
b det = np . z e r o s ( (M, 3 , 3 ) )
for i in range (0 ,M) :

temp = t r i . s i m p l i c e s [ i ]
p = [ l i s t ( po in t s [ temp [ 0 ] ] ) ,

l i s t ( po in t s [ temp [ 1 ] ] ) ,
l i s t ( po in t s [ temp [ 2 ] ] ) ]

a = [ 0 , 0 , 0 ]
b = [ 0 , 0 , 0 ]
c = [ 0 , 0 , 0 ]
c en t e r = [ 0 , 0 ]
for j in range ( 0 , 3 ) :

a [ j ] = p [ ( j +1)
b [ j ] = p [ ( j +1)
c [ j ] = p [ ( j +2)
cen te r [ 0 ] = cente r [ 0 ] + p [ j ] [ 0 ] / 3
cen te r [ 1 ] = cente r [ 1 ] + p [ j ] [ 1 ] / 3
Area [ i ] = Area [ i ] + p [ j ] [ 0 ] ∗ ( p [ ( j +1)

Area [ i ] = abs ( Area [ i ] ) ∗ 0 . 5

for i 1 in range ( 0 , 3 ) :
for i 2 in range ( 0 , 3 ) :

cons = 1
i f i 1==i 2 :

cons = 2
K det [ i ] [ i 1 ] [ i 2 ] = (b [ i 1 ]∗b [ i 2 ] +

c [ i 1 ]∗ c [ i 2 ] ) /4∗Area [ i ]+
beta∗beta∗ cons∗Area [ i ] /12

b det [ i ] [ i 1 ] [ i 2 ] = n∗n∗ cons∗Area [ i ] /12
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3.3 Scattering to create Global Matrices

def assemble ( element , K loc , b l o c ) :
K globe , b g lobe=np . z e r o s ( (N,N) ) , np . z e r o s ( (N,N) )

for e l in range ( len ( element ) ) :
enodes=element [ e l ]
for i in range ( len ( enodes ) ) :

for j in range ( len ( enodes ) ) :
K globe [ enodes [ i ] , enodes [ j ]]+= K loc [ e l ] [ i ] [ j ]
b g lobe [ enodes [ i ] , enodes [ j ]]+= b l o c [ e l ] [ i ] [ j ]

return K globe , b g lobe

K globe , b g lobe=assemble ( t r i . s imp l i c e s , K det , b det )

bdmask=[True ]∗N

for p in range ( len ( po in t s ) ) :
pt=po in t s [ p ]
i f ( pt [0 ]==0.0) or ( pt [1 ]==0.0) or ( pt [0]== a dim ) or ( pt [1]==b dim ) :

bdmask [ p]= False

K globe bc=K globe [ bdmask , : ]
K globe bc=K globe bc [ : , bdmask ]

b g lobe bc=b g lobe [ bdmask , : ]
b g l obe bc=b g lobe bc [ : , bdmask ]
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3.4 Solving the Eigenvalue Equation

from sympy import Matrix
from numpy import l i n a l g as l a
K mat=Matrix ( K globe )
b mat=Matrix ( b g lobe )
#p r i n t ( K mat . de t ( ) , K mat . i s symmetr ic ( ) )
#p r i n t ( b mat . de t ( ) , b mat . i s symmetr ic ( ) )

binv=l a . matrix power ( b g lobe bc , −1)
A=np . matmul ( binv , K globe bc )
k 2 , potvecs bc=l a . e i g (A)

ko = np . s q r t ( k 2 )
print (np . s o r t ( ko ) )

potvecs new=np . z e r o s ( (N, N) )
i , j =0, 0
for ind1 in range (N) :

j=0
i f (bdmask [ ind1 ] ) :

for ind2 in range (N) :
i f (bdmask [ ind2 ] ) :

potvecs new [ ind1 , ind2 ]= potvecs bc [ i , j ]∗ potvecs bc [ i , j ]
j=j+1

i=i+1

import pandas as pd
import matp lo t l i b . pyplot as p l t
import matp lo t l i b . t i c k e r as t i c k e r
import seaborn as sns
X = po in t s [ : , 0 ]
Y = po in t s [ : , 1 ]
for i in range (365 , len ( potvecs bc ) ) :

data = pd . DataFrame ({ ’X ’ : X, ’Y ’ : Y, ’Z ’ : potvecs new [ : , i ] } )
data p ivoted = data . p ivot ( ”X” , ”Y” , ”Z” )
ax = sns . heatmap ( data p ivoted )
p l t . show ( )
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4 Results

4.1 Rectangular Metal Waveguide

(a) 11 (b) 12 (c) 13

(d) 21 (e) 22 (f) 23

(g) 31 (h) 32 (i) 33

Figure 2: Field plots of (20x10) rectangular metal waveguide
(2600 points, 5000 Mesh Elements)
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4.2 Rectangular Normal Waveguide

(a) 11 (b) 12 (c) 13

(d) 21 (e) 22 (f) 23

(g) 31 (h) 32 (i) 33

Figure 3: Field plots of (20x10) rectangular waveguide with a
step index, placed in pseudo-infinite medium

(3700 points, 7300 Mesh Elements)
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4.3 Triangular Metal Waveguide

(a) 11 (b) 12 (c) 13

(d) 21 (e) 22 (f) 23

(g) 31 (h) 32 (i) 33

Figure 4: Field plots of (base:10, height:5) isosceles triangular
metal waveguide

(1700 points, 3200 Mesh Elements)
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4.4 Circular Metal Waveguide

(a) 10 (b) 11 (c) 11

(d) 12 (e) 12 (f) 20

(g) 24 (h) 22 (i) 30

(j) 22 (k) 33 (l) 32

(m) 40 (n) 42 (o) 50

Figure 5: Field plots of (5x5) circular metal waveguide
(2000 points, 3800 Mesh Elements)
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5 Future Scope

We have calculated the modal field solutions of a rectangular, circular and
triangular waveguides. The field plots we have obtained are also consistent
with the theoretical modal solutions to be expected for these contexts. A
particularly interesting direction would be to implement the edge element
formulation (Nedelec elements) in order to account for the vector behaviour
of the field. Moreover, findings in literature suggest that these can be used to
obtain better convergence of the eigenvalues than in the Lagrangian case (eg.
Khankhoje 2014, Boffi et al. 1999[2], [1]). Moreover, it would be interesting
to develop an automated scheme to eliminate spurious modes obtained as
solutions of the N dimensional eigenvalue problem. Beyond the development
of the finite element analysis solver, we would like to explore and implement
mesh refinement techniques such as adaptive mesh refinement, in which we
locally refine the mesh in regions with greater variation in the field or with
geometric corners. This tecnique

References

[1] D. Boffi, R. G. Duran, and L. Gastaldi. A remark on spurious eigenvalues
in a square. Applied mathematics letters, 12(3):107–114, 1999.

[2] U. K. Khankhoje. A primer on the 2d vector finite element method. 2014.

[3] A. Logg, K.-A. Mardal, G. N. Wells, et al. Automated Solution of Differ-
ential Equations by the Finite Element Method. Springer, 2012.

[4] R. H. Macneal and R. L. Harder. A proposed standard set of problems
to test finite element accuracy. Finite Elements in Analysis and Design,
1(1):3 – 20, 1985.

[5] B. A. Rahman and A. Agrawal. Finite element modeling methods for
photonics. Artech House, 2013.

13


